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The paper presents an example of reliability analysis of shell structures susceptible to sta-
bility loss from the condition of node snapping. In the reliability analysis of the structure,
uncertain parameters of the task are represented by uncorrelated random variables. The
approach used in the paper is an extension of the idea, which assumes the use of Neural
Networks (NNs) in Monte Carlo (MC) simulations to analyze the reliability of the struc-
ture. For this purpose, it was necessary to build a simple hybrid system formed with the
two independent sequentially working Finite Element Method (FEM) and Neural Networks
applications.

Keywords: reliability, truss structure, Neural Networks, Hybrid Monte Carlo Method (HMC)

1. Introduction

Structures and structural elements should be designed so that they can be considered reliable
throughout the entire expected lifetime under specified environmental conditions and for the
assumed maintenance strategy, that is, that they meet the requirements regarding stability,
load-bearing capacity and serviceability with a proper probability. Comprehensive information
on the theoretical basis of structural reliability analysis can be found in extensive literature
comprising thousands of monographs, dissertations and publications, cf. e.g. (Ditlevsen and
Madsen, 1996; Gwóźdź and Machowski, 2011).
The problem of structural reliability analysis comes down to determining the probability of

failure. As a standard, a deterministic approach is used during the design process, i.e. loads
or material and geometric characteristics are treated as sets of multipliers and parameters.
However, it should be emphasized that even the most accurate selection of these quantities may
not guarantee safety of the structure. The reason for this situation is the uncertainty of the
factor greater than that used in the design process according with the standards. In this case,
calculations are made using probability theory, i.e. a probabilistic approach is used instead of a
deterministic approach.
The work (JCSS, 1981) for the first time systematizes methods of reliability analysis, de-

scribes three levels of methods that clearly separate the deterministic from the probabilistic
approaches: level I (Knauff, 2015), level II (Kunstmann et al., 2002), level III (Radoń, 2012;
Dudzik, 2017).
In this work, one group of the above-mentioned methods was used, namely the Monte Carlo

(MC) method, which represents a simulation approach to level III methods. Due to complexity
of the data generation process, the MC simulation method was not widespread for many years.
Currently, due to development of computer capabilities, this approach has become an important
technique for analyzing reliability. Due to the basic disadvantage of the simulation approach by
1Article referring to the presentation at the 4th Polish Congress of Mechanics, 23rd International Conference

on Computer Methods in Mechanics (PCM-CMM-2019), 8-12 September 2019, Kraków, Poland
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the classical MC method, which is a time-consuming computation, a hybrid approach is used in
this paper. In this method, Artificial Neural Networks (NN) are used in Monte Carlo simulation.
This procedure has been extensively developing in recent years (Pabisek, 2008; Kaliszuk, 2011).
Artificial Neural Networks (NN), due to their mode of action, are very effective in analyzing

identification problems, cf. e.g. (Masters, 1996; Haykin, 1999). NNs are a very sophisticated
modeling technique capable of mapping very complex functions. This paper uses one of the
categories of neural networks, namely Feedforward Neural Network, commonly known as Back-
-Propagation Neural Network (BPNN). These networks are nonlinear, which causes that they
are particularly often used in civil engineering issues. BPNN networks are a tool for universal
approximation, which, when properly designed, are capable of modeling functions of almost any
complexity. The big advantage of neural networks is the ability to simultaneously approximate
several functions with the same arguments.

1.1. Monte Carlo simulation

The Monte Carlo (MC) method was developed and applied for the first time by mathema-
tician of Polish origin Stanisław Ulam, and then the method was used by John von Neumann
during World War II. The name Monte Carlo was created to indicate the random (gambling)
nature of phenomena (Metropolis and Ulam, 1949). The Monte Carlo method has long been re-
cognized as a technique with the highest accuracy among all probabilistic methods of analyzing
structure reliability. Applications of the MC method in Civil Engineering issues are described
in many papers, e.g. (Rubinstein and Kroese, 2008). The theoretical foundations of the Monte
Carlo method can be presented based on information about the limit state of an engineering
structure affected by uncertainty of its parameters. The probability of failure of the structure pf
characterized by uncertainty of the parameters contained in the vector X can be presented in
the form of an n dimensional integral

pf = Prob[G(X) ¬ 0] =
∫
· · ·
∫

G(X)¬0

fX(X) dx (1.1)

where: G(X) – limit state function of the structure, fX(X) – probability density function of the
n dimensional vector of random variables X describing the physical state of the structure.
Calculating integral (1.1) is a difficult task. The use of analytical methods to determine it

is possible only in special cases. Due to efficiency, numerical integration methods are also of
limited use.
A popular method of numerical calculation of multidimensional integrals is the Monte Carlo

simulation method. It consists in generating realization of xi of X variables, which are random
parameters of the construction according to specific probability density distributions fX(xi). In
this way, single random samples are obtained x̂i, which are used to validate the limit state of
the structure. In the case of exceeding the limit state, i.e. when G(x̂i) ¬ 0, it is assumed that
there was a structural failure. After putting through this experiment Ns times, the probability
of total failure can be calculated from the formula

pf ≃
n[G(x̂i) ¬ 0]
Ns

(1.2)

where: n[G(x̂i) ¬ 0] – number of simulations for which the structure has failed, Ns – total
number of attempts in the simulation.
The value of the number Ns strongly affects the accuracy of the total failure probability

estimation pf , so it should be determined correctly. The pf value appraised by the Monte Carlo
method is often called the estimated value or failure probability estimator. Very often in lite-
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rature, see paper (Olofsson and Andersson, 2012), a failure probability estimator is introduced,
which is described by means of an indicator function (reliability indicator)

p̃f ≃
1
Ns

Ns∑

i=1

I0/1[G(X) ¬ 0] (1.3)

where the function indicator I0/1 has the form

I0/1[G(X) ¬ 0] =
{
1 for G(Xi) ¬ 0
0 for G(Xi) > 0

(1.4)

The accuracy of the estimation obtained using MC simulation can be determined by the formula
êMC =

√
(1− p̃f )/(Nsp̃f ) (Jelic et al., 2004).

The above formula shows that the error of estimation made using the MC method is ap-
proximately proportional to 1/

√
Ns and does not depend on the dimension of the random va-

riable X. This is the main advantage of the method in engineering applications. According to
standard (PN-EN 1993-1-1:2006), for the limit state of load capacity of the designed building,
it is recommended to adopt a reliability index β = 3.8. This value is equivalent to unreliability
pf = 7.23 · 10−5. To achieve sufficient accuracy in reliability analysis, a minimum number of
simulations Ns = 9 · 107 is recommended (Rubinstein and Kroese, 2008).
Generating a large number of random samples x̂i needed to correctly estimate the probability

of failure of the structure, pf is a big limitation in using the classic Monte Carlo method. In
some cases, the problem considered is very complicated and requires a long time to evaluate a
single randomly selected parameter set. Therefore, numerical modifications of the classic MC
method are used, see (Carpentier and Munos, 2012).

1.2. Hybrid Monte Carlo method

Hybrid reliability analysis methods are a relatively new approach using in the Monte Carlo
simulations the so-called soft computation methods, which include neural networks. Due to the
way SN is used, three main concepts can be pointed up.

1. Neural networks can replace polynomial functions of the limit state in approximation
methods. This approach is presented by Deng et al. (2005), Dudzik and Potrzeszcz-Sut
(2019).

2. The learning and testing set of the network are direct values of the probability of failure
for the corresponding set values of the task parameters. An example of such an approach,
the so-called expert system, is presented in the paper (Tsompanakis et al., 2005).

3. In the third group of methods, NN is used for generating samples in the Monte Carlo simu-
lations. The patterns for network training and testing are computed by a FEM program.
This approach was first proposed at work (Papadrakakis et al. 1996), for probabilistic
analysis of the reliability of elasto-plastic frame constructions. In the following years, the
hybrid method combining FEM and NN was successfully developed by independent groups:
(Kaliszuk and Waszczyszyn, 2006; Pabisek et al., 2004; Pabisek, 2008; Papadopoulos et al.,
2012).

In the presented work, the Hybrid Monte Carlo (HMC) method is used to analyze the
reliability of elastic-plastic steel spatial trusses susceptible to loss of stability by snap-through
of a node. For this purpose, the author’s program implemented in the MATLAB computing
environment was used.
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The course of action in the used hybrid approach is presented in the block diagram:

1. Defining the problem:

• adoption of random variables X and their probabilistic
characteristics,

• defining the limit state function G(X).

2. FEM simulation -- generating a learning and testing set of patterns for

the neural network.

3. Preparation of the Neural Network -- design, learning and testing the NN

in offline mode.

4. Simulation by Neural Network -- using NN to create a set for simulation by

the MC method.

5. Reliability analysis:

• computation of the approximate value of the unreliability estimator pf
and reliability q,

• determination of reliability curves.

After defining the problem, i.e. adopting random variables, FEM simulation is performed,
which allows one to generate the NN’s learning and testing set. After the FEM simulation, the
neural network formulation phase follows. The prepared NN is then used to generate the set
applied in the MC simulation.

2. Numerical examples

The paper presents reliability analysis of two spatial trusses susceptible to stability loss from
the condition of node snapping. The Newton-Raphson algorithm was used to determine the
limit points on the equilibrium paths, in which both load and displacement control were used.
The developed algorithm was implemented into own FEM program. In the performed nonlinear
analysis, a two-node spatial truss finite element, which was described in (Waszczyszyn et al.,
1994), was used.
In both examples, the reliability curves were determined using the Hybrid Monte Carlo

method, see the diagram. The computations were made assuming three types of nonlinearity:
NG – geometric nonlinearity, NF – physical nonlinearity, NGF – geometric and physical non-
linearity. The analyzed trusses, discussed later in the examples, were designed in accordance
with the guidelines contained in standards (PN-EN 1990:2004; PN-EN 1993-1-1:2006; PN-EN
1993-1-4:2007), in such a way that individual bars do not undergo local buckling until reaching
the limit point.

2.1. Nonlinear material model

For modeling material nonlinearities during the reliability analysis of steel spatial trusses,
the power rule of Ramberg-Osgood (Ramberg and Osgood, 1943), was adopted

ε =
[ σ
σY
+ α
( σ
σY

)n]
ε0, 2 (2.1)

where: α = 0.83 – numerical parameter adopted according to (Pabisek, 2008), n = 5 – exponent,
adopted in accordance with standard (PN-EN 1993-1-4:2007).
In the case of nonlinear material characteristics, for NF and NGF cases, the initial modulus of

elasticity E occurring in the linear and displacement stiffness matrix (Waszczyszyn et al., 1994)
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must be replaced with the tangential module Et determined on the basis of the RO model. After
computation of the stress σ, the tangential module Et can be determined

Et(σ) =
1

[
1
σY
+ nασY

(
σ
σY

)n−1]
ε0,2

(2.2)

2.2. Design, training and testing of Neural Networks

Different variants of the analysis were considered, differing in the number of adopted random
variables X = [X1,X2, . . . ,XN ]. The detailed description of the variants is different for each
example. The adopted variables were treated as elements of the input vector of networks. In
each case, the output from the neural network was a scalar and corresponded to the limit load
of the construction system y = Pult. For the adopted in this way input and output vectors, a
network was designed, which realized the mapping Xi → y.
After making initial computations, it was decided to continue using a one-way two-layer

network with the Error Back-Propagation Learning Algorithm with architecture

BBNN: N −H − 1 (2.3)

where: N = 3 or 4 – number of network inputs, H – the number of neurons in the hidden layer.
Bipolar activation functions for the hidden layer neurons and a linear activation function in

the output neuron were assumed. SN formulation was done in the offline mode using the Neu-
ral Network Toolbox, working in MATLAB computing environment. The Levenberg-Marquard
method was used to learn the network (Hagan and Menhaj, 1994). The SN formulation process
was completed when the mean square errors of learning MSEL and testing MSET adopted a
value ¬ 1 · 10−5.
For the hybrid simulation of the MC method, network architectures were selected that met

the best the criterion of alignment of learning and testing errors.

2.3. Example 1

In this case, a not very rised lattice dome was analyzed, which is often presented in pu-
blications on nonlinear analysis and reliability, see works (Waszczyszyn et al., 1994; Radoń,
2012).

Fig. 1. Example 1: (a) spatial truss I: geometry and load diagram; (b) equilibrium paths determined for
the vertical displacement of the node w1 spatial truss, assuming average values of random variables

Figure 1a shows the diagram of the analyzed truss. The truss bars are made of RO168.3X10
round steel tubes with a modulus of elasticity E = 205GPa and a yield strength σY = 235MPa.
Figure 1b shows examples of equilibrium paths P (w1) determined for vertical displace-

ment w1 of node 1 of the truss. As you we see, the values of the coordinates of the limit
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points at which the phenomenon of snap-through of the node occurs are different depending on
the adopted type of analysis. These values are respectively:
NG – wG1 = 0.770m, Pult = 207.4 kN,
NF – wG1 = 0.315m, Pult = 118.9 kN,
NGF – wG1 = 0.305m, Pult = 103.1 kN.
Reaching the limit point on the equilibrium path corresponds to the global loss of structure

stability.
In this example, feedforward PBNN networks with one hidden layer, assuming the N−H−1

structure, were designed (see (2.3)). The entrance to the network were the following vectors:
NG – N = 3, H = 7, X(3×1) = [E,A,P ],
NF – N = 4, H = 7, X(4×1) = [E,A,P, σY ],
NGF – N = 4, H = 10, X(4×1) = [E,A,P, σY ],

with a hidden layer containing H number of sigmoidal neurons and one linear output y = Pult.

2.3.1. NG: geometric nonlinearity

Table 1 presents the mean values µi and standard deviations σi of the adopted random
variables X = [E,A,P ], which were selected from the ranges determined according to the three-
-sigma rule Xi ∈ [µi − 3σi, µi + 3σi], see e.g. (Gwóźdź and Machowski, 2011). A coefficient of
variation equal to 10% was assumed for each variable.

Tabel 1. Description of random variables for NG, NF and NGF models

Random variable Xi Mean value µi Standard deviation σi
X1 = E µE = 205GPa σE = 20.5GPa
X2 = A µA = 0.049m2 σA = 0.0005m2

X3 = P µP = 1kN σP = 0.1 kN
X4 = σY µf = 235MPa σf = 23.5MPa

Table 2 presents random variables related to the considered cases. In case 1, three random
variables were assumed to affect the load capacity of the analyzed truss. These variables are the
modulus of elasticity E, the cross-sectional area of the elements A and the load of the nodes
of the system P . In rest cases 2-4, the value of one of the variables was deterministic and was
taken from the range belonging to the area of its variability. Reliability curves for cases 2-4
were created by performing MC simulation for each of the 30 accepted dividing points of the
determined variable. 108 samples were drawn for each simulation, separately for each random
variable according to the distribution given in Table 2. Then, in virtue of the formulated SWPB:
3− 7− 1 neural network, the limit load value was determined on the basis of which the value of
indicator function (1.4), probability of failure (1.3) and then the reliability (q = 1 − pf ) of the
structure were determined.
Additionally, in each case, four versions (A, B, C, D) of the hybrid Monte Carlo simulation

were considered, differing in the adopted probability distribution functions (PDFs) of the selected
random variable. In Table 2, the letter L denotes the log-normal distribution, and the letter N
the normal distribution of random variables, and “det.” is the abbreviation for the determined
value.
In this way, 14 reliability curves were determined, presented in Fig. 2. The comparison of the

delineate diagrams shows that all adopted random variables X1, X2 and X3 significantly affect
the reliability of the structure. In the first case of the analysis (Fig. 2a), it can be seen that the
adoption of the distributions given in version A strongly affects the reliability curves. Assuming
the log-normal PDF of the variables E and A and the normal PDF of the variable P reduces
the range of the structure work.
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Tabel 2. Simulated cases (NG model)

Case
Random PDF: fx(xi)
variable Xi A B C D

X1 L N – –
1 X2 L N – –

X3 N L – –
X1 (det.) – – – –

2 X2 L N L N
X3 L N N L
X1 L N L N

3 X2 (det.) – – – –
X3 L N N L
X1 L N L N

4 X2 L N N L
X3 (det.) – – – –

Fig. 2. Reliability curves for geometrical nonlinearity: (a) case 1, (b) case 2, (c) case 3, (d) case 4

2.3.2. NF: physical nonlinearity, NGF: geometrical and physical nonlinearity

Table 1 presents the mean values µi and standard deviations σi of the assumed random
variables X(4×1) = [E,A,P, σY ] in NG and NGF analyzes.
Table 3 contains the considered cases of reliability analysis. In case 1, it was assumed four

random variables affecting the load capacity of the analyzed truss. These variables were: the
modulus of elasticity E, the cross-sectional area of the elements A, the load of the nodes of the
system P and the yield strength of steel σY . In cases 2-5, the value of one of the variables was
treated as deterministic and adopted in its range. Reliability curves were created by performing
MC simulation for each of the 30 determined variable values. In each simulation, 108 samples
were drawn, separately, for each random variable according to the distribution given in Table 3.
Then, as before, by means of the formulated neural networks SWPB: 4 − 7 − 1 and SWPB:
4 − 10 − 1 the limit load values were determined, on the basis of which the indicator function,
probability of failure and then the reliability of the structure were determined.
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Tabel 3. Simulated cases (NF and NGF models)

Case
Random PDF: f(Xi)
variable Xi A B C D

1

X1 L N – –
X2 L N – –
X3 N L – –
X4 L N – –

2

X1 (det.) – – – –
X2 L N L N
X3 L N N L
X4 L N L N

3

X1 L N L N
X2 (det.) – – – –
X3 L N N L
X4 L N L N

4

X1 L N L N
X2 L N N L

X3 (det.) – – – –
X4 L N L N

5

X1 L N L N
X2 L N N L
X3 L N L N

X4 (det.) – – – –

Additionally, in each case, four versions (A, B, C, D) of Monte Carlo simulations differing in
the adopted distribution functions of the selected random variable were considered. In total, for
each type of nonlinearity, 18 reliability curves were determined for various vectors of the random
variables X. The curves are presented in Fig. 3.
When analyzing case 1 (Fig. 3a), it can be seen that the variant A of the probability di-

stribution function reduces the value of the load limit NF: Pult(1A) = 79%Pult(1B), NGF:
Pult(1A) = 82%Pult(1B).
After analyzing the results of computations, it turned out that in the case of assuming phy-

sical nonlinearities, Young’s modulus E has practically no effect on the probability of structure
failure. However, if physical and geometrical nonlinearities are adopted, the structure is sensitive
to each of the random parameters adopted for the task.
Based on the analysis of the case of diagrams 3-5, presented in Fig. 3, it can be concluded

that the random variables X2, X3, X4 affect the structure reliability. Reliability curves have
a smoother course for cases 3 and 5 than for case 4. This means that the cross-section A and
material parameters σY have a smaller impact on the probability of spatial truss failure than
the P load.
The change in reliability depending on the adopted types of probability distributions of

random variables was also analyzed. The most adverse cases are: 1A, 3C, 4A and 5D, in which
the range of work of the structure is the smallest.

2.4. Reliability analysis of a spatial truss II

The second example concerns the reliability analysis of a steel truss structure (Fig. 4a) sus-
ceptible to loss of stability through snap-through of the node. The layout diagram was obtained
from the work by Dudzik (2016). The structure was designed from RO 135x5 pipe profiles.
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Fig. 3. Reliability curves for physical (NF) and physical and geometrical (NGF) nonlinearities:
(a(a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5

All elements are made of S355NH steel with a yield strength σY = 355MPa and a modu-
lus of elasticity E = 210GPa. The support conditions were adopted in the form of a pinned
fixture.

Figure 4b shows examples of equilibrium paths P (w1) determined for vertical displace-
ment w1 of node 1 of the truss. The coordinates of the limit points, at the moment when the
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Fig. 4. (a) Spatial truss II: geometry and load diagram, (b) equilibrium paths determined for the
vertical displacement w1 of node 1 spatial truss, assuming average values of random variables

phenomenon snap-through of the node occurs, are different depending on the type of analysis
adopted (NG, NF, NGF). These coordinates are:

NG – wG1 = 0.070m, Pult = 6.66 kN,

NF – wG1 = 0.132m, Pult = 16.36 kN,

NGF – wG1 = 0.069m, Pult = 6.58 kN.

In this case, reaching the limit point on the equilibrium path corresponds to the global loss of
stability of the structure.

Table 4 presents expected values µi and standard deviations σi of the adopted random
variables X = [E,A,P, σY ] along with the assignment of variables to the type of analysis (NG,
NF, NGF). In this example, LN – log-normal distribution was used for material parameters
(E,A, σY ), while for the load P the normal distribution (N) was used.

Tabel 4. Description of variables and assignment to the type of analysis

Random variable Xi Mean value µi Standard deviation σi Analysis type

X1 = E 210GPa 21GPa NG+NGF
X2 = A 20.42 · 10−4m2 1.02 · 10−4m2 NG+NF+NGF
X3 = P 10 kN 1 kN NG+NF+NGF
X4 = σY 355MPa 7.1MPa NF+NGF

In this example, feedforward PBNN networks with one hidden layer, assuming the N−H−1
structure, were also designed (2.3). The entrance to the network were the following vectors:

NG – N = 3, H = 5, X(3×1) = [E,A,P ],

NF – N = 3, H = 7, X(3×1) = [A,P, σY ],

NGF – N = 4, H = 10, X(4×1) = [E,A,P, σY ].

Table 5 shows all cases of performed analysis. In each Monte Carlo simulation, 108 ran-
dom samples were used, generated using the developed NNs, in accordance with the adopted
probability density distributions.

Based on the analysis of the reliability curves presented in Fig. 5a, referring to cases 1, 2
and 3, it can be concluded that the impact of physical nonlinearities while taking into account
geometrical nonlinearities is negligibly small and amounts to approximately 0.75% for
q(Pult) = 0.95.

In the second analyzed case, Fig. 5b, presenting the influence of the yield strength on the
reliability of truss II, it can be seen that for NGF nonlinearity the parameter σY has no effect on
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Tabel 5. Simulated cases for example II

Case
Analysis Random Determined
type variable Xi variables

1 NG X1, X2, X3 –
2 NF X2, X3, X4 –
3 NGF X1, X2, X3, X4 –

4
A NF X2, X3 X4 = σYB NGF X2, X3, X4
A NG X1, X3

5 B NF X3, X4 X2 = A
C NGF X1, X3, X4
A NG X1, X2

6 B NF X2, X4 X3 = P
C NGF X1, X2, X4

7
A NG X2, X3 X1 = EB NGF X2, X3, X4

the work of the structure, while during the NF analysis the yield strength value is important in
the reliability analysis. Figures 5c,d,e show successive cases 5-7, showing the impact of the deter-
mined values of the parameters (cross-sectional area A, load values P and Young’s modulus E)
on the shape of reliability curves.
The graphs above show that for all types of nonlinearity (NG, NF and NGF), the parameters

A and E and load P play an important and similar role in the reliability analysis.

3. Summary and general conclusions

The article presents the use of neural networks to analyze the reliability of spatial trusses taking
into account physical and geometrical nonlinearities. Computations were made using a hybrid
system. This system was created by working sequentially, two separate FEM and NN applica-
tions. Using the FEM program, sets for learning and testing the neural networks were generated,
then PBNN networks were used to generate samples in simulations of the classic Monte Carlo
method to determine reliability curves. The reliability curves can be used in the engineering de-
sign process because they show changes in structure reliability caused by fluctuations of selected
design parameters that are random.
Analyzis of the reliability of the first spatial truss with taking into account the material

nonlinearity significantly reduced the safe range of operation of the structure, but did not change
the reliability curve of the Lamella dome (example II).
Comparison of the computed reliability curves shows that if only physical nonlinearities

are assumed in the structure, Young’s modulus practically has no effect on the probability of
structure failure. The significant impact of other task parameters, i.e. cross-sectional area, yield
strength and the value of the applied load on the reliability is similar in all tasks analyzed in
this work.
It also turned out that the reliability of the structure is largely influenced by the adopted

functions of probability distribution of random variables. The most unfavorable cases in which
the range of working of the structure is the smallest (reliability reaches zero value faster than for
other variants) occur when a log-normal distribution is used for material parameters, whereas
the normal distribution is used for the load.
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Fig. 5. Reliability curves: (a) cases 1-3, (b) case 4, (c) case 5, (d) case 6, (e) case 7

References

1. Carpentier A., Munos R., 2012, Adaptive stratified sampling for Monte-Carlo integration of
differentiable functions, Proceedings of the 25th International Conference on Neural Information
Processing Systems, 1

2. Deng J., Gu D., Li X., Yue Z.Q., 2005, Structural reliability analysis for implicit performacne
functions using neural networks. Structural Safety, 27, 25–48, DOI: 10.1016/j.strusafe.2004.03.004

3. Ditlevsen O., Madsen H., 1996, Structural Reliability Methods, Wiley & Sons



Reliability analysis of shell truss structure... 481

4. Dudzik A., 2016, The effectiveness of the FORM method compared to other probabilistic methods
in the analysis of bar structures, PHD Disertation (in Polish), Politechnika Świętokrzyska, Kielce.

5. Dudzik A., 2017, Reliability assessment of steel-aluminium lattice tower, IOP Conference Series:
Materials Science and Engineering, 245, 1-9, DOI: 10.1088/1757-899X/245/3/032072

6. Dudzik A., Potrzeszcz-Sut B., 2019, The structural reliability analysis using explicit neural
state functions, MATEC Web of Conferences, 262, 1, DOI: 10.1051/matecconf/201926210002

7. Gwóźdź M., Machowski A., 2011, Selected Tests and Calculations of Building Constructions by
Probabilistic Methods (in Polish), Wydawnictwo Politechniki Krakowskiej im. Tadeusza Kościuszki,
Kraków

8. Hagan M., Menhaj M., 1994, Training feedforward networks with the Marquardt algorithm,
IEEE Transactions on Neural Networks, 5, 6, 989-993, DOI: 10.1109/72.329697

9. Haykin S., 1999, Neural Networks – A Comprehensive Foundation, Prentice Hall, New York

10. JCSS, 1981, Joint committee on structural safety, general principles on reliability for structural
design, IABSE

11. Jelic A., Baitsch M., Hartmann D., Spitzlei K., Ballnus D., 2004, Distributed computing
of failure probabilities for structures in civil engineering, X International Conference on Computing
in Civil and Building Engineering, Weimar

12. Kaliszuk J., 2011, Hybrid Monte Carlo method in the reliability analysis of structures, Computer
Assisted Mechanics and Engineering Sciences, 18, 205-216

13. Kaliszuk J., Waszczyszyn Z., 2006, Reliability analysis of a steel girder by the hybrid Monte
Carlo method. Progress in steel, composite and aluminium structures, Proceedings of the XIth
International Conference on Metal Structures, Rzeszów, 843-847

14. Knauff M., 2015, Calculation of Reinforced Concrete Structures According to Eurocode 2 (in
Polish), PWN, Warszawa

15. Kunstmann H., Kinzelbach W., Siegfried T., 2002, Conditional first-order second-moment
method and its application to the quantification of uncertainty in groundwater modeling, Water
Resources Reaserch, 38, 4-1035, 6.1-6.14

16. Masters T., 1993, Practical Neural Network Recipies in C++, Morgan Kaufmann

17. Metropolis N., Ulam S., 1949, The Monte Carlo Method, Journal of the American Statistical
Association, 44, 247, 335-341, DOI: 10.1029/2000WR000022

18. Olofsson P., Andersson M., 2012, Probability, Statistics, and Stochastic Processes, 2nd ed.,
Wiley-Interscience, DOI: 10.1002/9781118231296.ch3

19. Pabisek E., 2008, Hybrid Systems Integrating FEM and SSN in the Analysis of Selected Problems
of Structural Mechanics and Materials (in Polish), Politechnika Krakowska, Kraków

20. Pabisek E., Kaliszuk J., Waszczyszyn Z., 2004, Neural and finite element analysis of a pla-
ne steel frame reliability by the Classical Monte Carlo method, Artificial Intelligence and Soft
Computing – ICAISC 2004, 7th International Conference, Zakopane, 1081-1086

21. Papadopoulos V., Giovanis D., Lagaros N., Papadrakakis M., 2012, Accelerated subset
simulation with neural networks for reliability analysis, Computer Methods in Applied Mechanics
and Engineering, 223-224, 70-80, DOI: 10.1016/j.cma.2012.02.013

22. Papadrakakis M., Papadopoulos V., Lagaros N., 1996, Structural reliability analysis of
elastic-plastic structures using neural networks and Monte Carlo simulation, Computer Methods in
Applied Mechanics and Engineering, 136, 145-163, DOI: 10.1016/0045-7825(96)01011-0

23. PN-EN 1990:2004, Basics of structural design (in Polish), PKN, Warszawa

24. PN-EN 1993-1-1:2006, Steel structure design – Part 1-1: General rules and rules for buildings (in
Polish), PKN, Warszawa



482 B. Potrzeszcz-Sut

25. PN-EN 1993-1-4:2007, Designing of steel structures – Part 1-4: General rules – Supplementary rules
for stainless steel structure (in Polish), PKN, Warszawa

26. Radoń U., 2012,Application of the FORM Method in the Analysis of Reliability of Truss Structures
Susceptible Node Snapping (in Polish), Wydawnictwo Politechniki Świętokrzyskiej, Kielce

27. Ramberg W., Osgood W., 1943, Description of stress-strain curves by three parameters, Tech-
nical Note No. 902, National Committee for Aeronautics, Washington DC

28. Rubinstein R., Kroese D., 2008, Simulation and the Monte Carlo Method, Wiley-Interscience,
DOI: 10.1002/9781118631980

29. Tsompanakis Y., Lagaros N., Stavroulaki G.E., 2005, Efficient neural network models for
structural reliability analysis and identification problems, The Eighth International Conference on
the Application of Artificial Intelligence to Civil, Structural and Environmental Engineering, DOI:
10.4203/ccp.82.41

30. Waszczyszyn Z., Cichoń C., Radwańska M., 1994, Stability of Structures by Finite Element
Methods, Elsevier, Amsterdam

Manuscript received November 29, 2019; accepted for print February 24, 2020


